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The Ósükösd Camps of the ELTE Radnóti Miklós High School

talented and open-minded, but mostly not "mathy" children
(Since then: chemist, doctor, economist, philosopher, poet,
psychologist, political scientist,. . . — and: mathematician)

Our purposes:
give an insight into "contemporary math"
show the experience and joy of discovery
attractive, participatory math
novelties, toughies for the more mathy

altogether 2 or 3 times 90-120 minutes of math
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1. The Plush Animal Game
Groups of size 10-12

Props needed in every group of size n:
n different plush animals
3n cards, the name of each plush is on exactly three

everyone picks 3 cards: "favourite" animals
(less than 3 favourites possible in case of repeated cards)
Common aim: everyone should hold one of their favourites
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1. The Plush Animal Game
Rules:

Showing the cards to each other is not allowed.
No form of communication (talking, writing, signing) is
allowed.
Groups compete against each other, the quickest one wins.

Playing the game:
First immediately, right after announcing the rules.
Before the second round groups are given time to discuss
strategies.
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1. The Plush Animal Game — Aims and Observations
Common discussion of strategies. Tipical:

If I haven’t got a plush, but I see one on the table that I like then
I grab it.
If I hold a plush but at least one group member doesn’t and I
see another one on the table that I like then I swap.

Problem setting:
Given: n thingies, n whatnots, allowed (thingy,whatnot) pairs
Aim: match all thingies and whatnots
Optional: exact terminology (bipartite graph, perfect matching)
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1. The Plush Animal Game — Aims and Observations

What practical applications does this problem have (beyond
plush happiness)?

boys, girls, high school prom (, dating apps, . . . )
jobs, workers, aim: get each job done

Less mature, but interesting ideas:
university/high school applications and enrolment

(−→stable matching)

timetable scheduling
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2. Augmenting Path
How was the number of pairs increased by the plush game strategy?

If I haven’t got a plush, but I see one on the table that I like then I
grab it.
If I hold a plush but at least one group member doesn’t and I see
another one on the table that I like then I swap.

"Pisti liked the spider on the table, so he picked it up."
"Pisti swapped the spider for the camel. So the spider became
free, which Marcsi liked, so she picked it up."
"Andris swapped the crocodile for the sheep, then Gergő swapped
the amoeba for the crocodile, etc. Finally, Lola picked up the dog."
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2. Augmenting Path
What fortunate situation helps us increase the number of couples?

Augmenting path: starts from an unmatched thingy
arrives in an unmatched whatnot
every second step forms a current couple

How could we build a method (algorithm) for finding a perfect
matching from this notion?

Start out from a random matching.
Search for an augmenting path. If one is found, increase
the matching by swapping along the path.
Repeat this until no more augmenting path exists.
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3. The Matching Game
Two equal groups of size 10-12 ("boys" and "girls")

Props:
Spiderman and Hello kitty themed party hats
A card for everyone: a list of who he/she likes from the
opposite sex. (Likings are mutual.)

Common aim: a match for everyone that they like
How? Use the algorithm!
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3. The Matching Game — Aims and Observations
It doesn’t work, there is chaos and no perfect matching.
(At least: hopefully. . . )

Why?
If we already have a (relatively big) matching, how do
we search for an augmenting path?
How do we know that there is no more augmenting
path?
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3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.

Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
???If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".
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Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle

Sacred Lawn

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.
Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.
Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.
Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.
Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.
Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Augmenting Path Searching Ritual in the Jungle
Props: Sacred Lawn, a (partial) matching
Couples always stand and move together, hand in hand.
Rules:

At the beginning: only single girls stand on the lawn.
If a girl is on the lawn (whether single or not), she calls
all the boys she likes onto the lawn. (If the boy has a
partner, he brings her along.)
If a single boy spots a girl he likes on the lawn, he
yells: "AUGMENTING PATH!".

AUGMENTING

PATH!

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats



3. Matching Game with Jungle Ritual
First playing: perfect matching is found

Second playing: new cards, gender swap, perfect matching again
Third playing: new cards, no perfect matching is found, the
process "freezes”

What’s the next relevant question?
Is there really no perfect matching or is it just the algorithm that’s
useless?
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3. Matching Game with Jungle Ritual
Hint:

The answer to this question lies on the Sacred Lawn!

What follows from the fact that the process is "frozen"?
Answer: girls on the lawn can only like boys on the lawn.
What follows from this?
How does the number of girls and boys on the lawn
compare? Is this always true in a similar situation?

Sacred Lawn
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4. Hall’s Theorem

Our question was: what does it depend on if n boys and n girls
can be matched off such that everybody gets a partner?
What did we prove now? Formulate a theorem.

Theorem (P. Hall, 1935)
In all such situations exactly one of the following is true:

There exists a perfect matching.
There exist k girls who altogether like fewer than k boys.

Proof
Either the Augmenting Path Algorithm finds a perfect matching,

or if not then once it’s over, girls on the Sacred Lawn only like
boys on the Sacred Lawn, who are less in number.
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4. Question Session

Ask interesting, relevant questions based on our discoveries.

The number of boys and girls is not equal, we want a
husband for every girl (but boys can remain single).

(Answer: it’s the same, both Hall’s Theorem and its proof
remain valid.)

Find the maximum number of pairs (between boys and
girls).

(Answer: the augmenting path algorithm finds one.)
Proof: (not that easy) −→ Problem.)

Every (boy,girl) pair has a given profit value, we want a
matching of maximum total profit.

(−→ Jenő Egerváry’s algorithm, "Hungarian Method")

Perfect (or maximum) matching in a homosexual
community (or in the world of snails)

(−→ Tutte’s theorem, Edmonds’ algorithm)

„3-dimensional” matching: (boy, girl, pet) triplets

NP-hard problem (that is, a very hard problem)
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(−→ Jenő Egerváry’s algorithm, "Hungarian Method")
Perfect (or maximum) matching in a homosexual
community (or in the world of snails)

(−→ Tutte’s theorem, Edmonds’ algorithm)

„3-dimensional” matching: (boy, girl, pet) triplets

NP-hard problem (that is, a very hard problem)

Júlia Kornai & Dávid Szeszlér Alternating Path Algorithm with Party Hats

http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf
https://www.cs.dartmouth.edu/~ac/Teach/CS105-Winter05/Handouts/tarjan-blossom.pdf


4. Question Session

Ask interesting, relevant questions based on our discoveries.

The number of boys and girls is not equal, we want a
husband for every girl (but boys can remain single).
(Answer: it’s the same, both Hall’s Theorem and its proof
remain valid.)
Find the maximum number of pairs (between boys and
girls). (Answer: the augmenting path algorithm finds one.)
Proof: (not that easy) −→ Problem.)
Every (boy,girl) pair has a given profit value, we want a
matching of maximum total profit.
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5. Problem Solving Session
Groups of 3-4, 3 problem sets
Each group works on one problem set, moves forward after
a correct solution.

At the end, mixed groups are formed: a representative
from every problem set shares their discoveries with the
others. ("Jigsaw Method", „Szakértői Mozaik”)
Extra problems in store to entertain the quick ones.
Drawing common conclusions publicly.
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5. Problem Solving Session
Structure of the problem sets:

1 Getting acquainted: an example (that’s solvable).

2 Complete a partial example to be solvable – impossible.
3 In what case is such a problem solvable? Formulate a

conjecture based on the experiences. Is the conjecture true?
Try to prove it.

4 Is there an interesting special case in which this type of
problem is always solvable? Find one. Prove that the problem
is really solvable in these cases.
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5. First Problem Set: Solitaire
1. A standard (52-card) deck of playing cards is dealt out into 13 smaller
decks. Choose one card from each deck such that there is one of each
rank among the selected cards (that is, one 2, one 3, one 4, etc., one
Queen, one King and one Ace). (Suits of the cards are of no relevance.)
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5. First Problem Set: Solitaire
2. The following problem is like the previous one – with the difference
being that six decks were "lost". Try to reconstruct the missing decks
in such a way that the obtained problem is solvable.

Solution: impossible, because each card of rank 3, 5, 8, 10 and
Queen is in the first four decks.
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5. First Problem Set: Solitaire

3. Formulate a conjecture. Then try to prove it.

Theorem
In all cases exactly one is true:

The Solitaire Problem is solvable.
There exist k ranks such that all cards from these ranks
are contained in less than k decks.

4. Find an interesting special case in which this type of problem
is always solvable.

Theorem
If the deck is dealt out into smaller decks of equal size (that is,
of size 4) then the Solitaire Problem is always solvable.

(When did we meet this phenomenon in a different form?
−→ Plush Animal Game)
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5. Second Problem Set: Surveillance
1. A small town consists of 8 North-South and 8 East-West streets. Security
is very important for the inhabitants of the town so they built watchposts into
some crossings – these are represented by angry faces. If a guard is
deployed in a watchpost then
both streets that cross at that
watchpost can be kept under
surveillance. Besides security,
money is also valued by the in-
habitants therefore they want
to keep the whole town un-
der surveillance by hiring not
more than 8 guards and dep-
loying them into suitably chos-
en watchposts.

Is that possible?
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5. Second Problem Set: Surveillance
2. This problem is like the previous one, however, the three southmost
streets of the town were swept over by a tornado and all watchposts in that
region were destroyed. Try
to reconstruct the missing
watchposts in such a way
that the problem becomes
solvable (with 8 guards).

Solution: impossible beca-
use in the 1st, 2nd, 3rd
and 5th East-West streets
watchposts could only be
deployed in the 2nd, 3rd or
7th North-South streets.
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5. Second Problem Set: Surveillance

3. Formulate a conjecture. Then try to prove it.

Theorem
In all cases exactly one is true:

The Surveillance Problem is solvable.
There exist k East-West streets such that all watchposts in
these streets are positioned in less than k North-South
streets.

4. Find an interesting special case in which this type of problem
is always solvable.

Theorem
If every (East-West and North-South) street contains the same
number of watchposts then the Surveillance Problem is always
solvable.
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5. Third Problem Set: Settling on the Island
1. 6 tribes dwell on an island, they support themselves by cultivation and
hunting. Due to frequent clashes between the tribes, the Ministry of
Agriculture divided up the island into 6 parcels with the intention of giving
one to each tribe for cultivation: these parcels are bounded by straight lines.
Not knowing of the existing division, the Ministry of Hunting also parcelled
out the island into 6 parts,
these are bounded by
curvy lines. Now every
tribe gets one parcel for
cultivation and another
one for hunting. Obviously,
the tribes want to distribute
the parcels such that each
tribe’s two parcels have a
common part where they
can settle.
Is that possible?
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5. Third Problem Set: Settling on the Island
2. This problem is like the previous one with two differences. Firstly, now 20
tribes dwell on the island. Secondly, there have been cutbacks at the
Ministry of Hunting, the map drawers were fired and thus their job remained
unfinished. Try to finish their job in such a way that it will be possible to
distribute the parcels to the satisfaction of all 20 tribes.

Solution: impossible, be-
cause the upper 3 × 4 cul-
tivation parcels completely
cover 13 hunting parcels.
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5. Third Problem Set: Settling on the Island

3. Formulate a conjecture. Then try to prove it.

Theorem
In all cases exactly one is true:

The Settling on the Island Problem is solvable.
There exits k hunting parcels that are completely covered
by less than k cultivation parcels.

4. Find an interesting special case in which this type of problem
is always solvable.

Theorem
If the area of all (hunting and cultivation) parcels are equal then
the Settling on the Island Problem is always solvable.
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Closing Remarks
Instead of party hats: an alternative way to present the Matching Game

Instead of flesh-and-blood participants, boys and girls are
represented by (blue and red, numbered and lettered) pawns

Likings are given in a table, the Sacred Lawn is printed on
paper.
The algorithm is played in pairs: one player can only move
boys, the other one girls.

D
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1A 8C

6F

5E2B

4 3

I

G H
7

Sacred Lawn
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Closing Remarks
Behind the scenes: how was the graph of the Matching Game made?

If the graph is random then a perfect matching is formed
too quickly and easily: with high probability augmenting
paths are of length 1 or 3. This is not instructive.
Opposite extreme: the graph has a unique perfect
matching. Then the graph is "boring" (for example, there
must exist a boy and a girl of degree one).
No matter how much finesse is used, a perfect matching (if
it exists) can arise quickly and/or trivially. Therefore it’s
useful to prepare a (partial) matching from where the
algorithm is interesting and instructive.
According to our experience, the following works well: a
high percentage of the edges is critical, that is, it is
included in every perfect matching.
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Closing Remarks
Behind the scenes: how was the graph of the Matching Game made?

Girls

A B C D E F G H I J K

Bo
ys

1 ♥ ♥ ♥ ♥ ♥
2 ♥ ♥ ♥ ♥ ♥
3 ♥ ♥ ♥ ♥
4 ♥ ♥ ♥ ♥
5 ♥ ♥ ♥ ♥
6 ♥ ♥ ♥ ♥
7 ♥ ♥ ♥ ♥
8 ♥ ♥ ♥
9 ♥ ♥ ♥
10 ♥ ♥
11 ♥ ♥

Critical edge: included in every perfect matching
If any critical edge were removed, Hall’s condition would be violated.
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Extra Problems (for the apt and worthy)

Problem
If no more augmenting path exists then the current matching is
maximum.

Solution (sketch)
Denote by k the number of couples.

Let the set Z consist of all boys standing on the Sacred
Lawn and all girls standing off the Sacred Lawn.
Z has k members: exactly one from each couple.
Z contains at least one vertex of each edge of the graph
(that is, at least one member each potential couple).
Because: girls on the lawn can only like boys on the lawn.
(Z is a vertex cover.)
Since every couple in every matching "consumes" at least
one member of Z , no matching bigger than k can exist.
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Extra Problems (for the apt and worthy)

Problem
25 little bugs live on a 5× 5 checkerboard, one on each square.
At a certain moment, each bug sets off and moves to an
adjacent square of the board. (By "adjacent" we mean that the
squares share a common edge, we do not consider them to be
adjacent if they only share a common vertex.) The bugs want to
organize their (simultaneous) movement in such a way that
finally each square will again be occupied by a single bug. Is
this possible?

After finding the answer for the above question, try to ask and
answer further questions inspired by the problem of the 25
bugs.
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Extra Problems (for the apt and worthy)

Solution (sketch)
The checkerboard problem is a known puzzle: the bugs
would want to move from 13 (say) white squares to 12
black ones, which is impossible.

Let’s replace the checkerboard by an arbitrary graph G in
the problem: a bug lives in every vertex and they want to
move to adjacent vertices. For what graphs G is this
possible?
The conjecture suggested by the checkerboard problem: if
and only if no matter how k vertices are chosen from G,
there exist at most k nodes among the remaining
(non-chosen) vertices such that all their neigbours are
among the k chosen ones.
The conjecture is true. Necessity is trivial, sufficiency can
be proved using Hall’s theorem (but it’s non-trivial, it takes
some work).
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Extra Problems (for the apt and worthy)

Problem
In a school, each class and each teacher has at most k classes
every week. Prove that a timetable with k time slots can be made.

(That is: the edge-chromatic index of a bipartite graph is the
maximum degree.)

Solution (sketch)
We rely on: every regular (that is, every degree is the same)
bipartite graph has a perfect matching. This follows from
Hall’s Theorem (and it also came up at the Solitaire and the
Surveillance Problems).

If the graph is k -regular then we are done by applying this k
times.
If not then the graph can be augmented by extra vertices and
edges to be k -regular. (For this, parallel edges have to be
allowed, but that’s not a problem.)
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Extra Problems (for the apt and worthy)

Problem
Let F and T be two spanning trees in the connected graph G
with n vertices. Prove that the edges of F and T can be
numbered from f1 to fn−1 and t1 to tn−1, respectively, such that
(E(F ) \ {fi}) ∪ {ti} is also the edge set of a spanning tree in G
for every 1 ≤ i ≤ n − 1.

Solution (sketch)
Define a bipartite graph such that its two partition classes are
E(F ) and E(T ) and fi is adjacent to tj if and only if
(E(F ) \ {fi}) ∪ {tj} is the edge set of a spanning tree. Apply
Hall’s Theorem in this graph to prove the existence of a perfect
matching.
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Extra Problems (for the apt and worthy)

Problem
Extend the notions of matching and augmenting path to
arbitrary (non-bipartite) graphs and then answer the question:
is it true that if there exists no augmenting path with respect to
a matching then the matching is maximum?
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Extra Problems (for the apt and worthy)

Solution (sketch)
Augmenting path: a path of odd length between two unmatched
vertices every second edge of which is in the matching.

The "no augmenting path⇔ the matching is maximum" claim is
true.
The⇐ direction is obvious. For the⇒ direction let M1 be a
matching with respect to which there is no augmenting path and
assume towards a contradiction that M2 is a bigger matching.
Let the edge set of the graph H be the symmetric difference of
M1 and M2. Every degree in H is at most 2, therefore H consists
of disjoint paths and cycles.
Since |M2| > |M1|, one component of H is an augmenting path.
Comment: although true, obtaining an efficient algorithm from
this claim is much more complicated than in case of bipartite
graphs (since searching for, or deciding the existence of an
augmenting path is highly non-trivial). (−→ Edmonds’ algorithm)
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Let the edge set of the graph H be the symmetric difference of
M1 and M2. Every degree in H is at most 2, therefore H consists
of disjoint paths and cycles.
Since |M2| > |M1|, one component of H is an augmenting path.
Comment: although true, obtaining an efficient algorithm from
this claim is much more complicated than in case of bipartite
graphs (since searching for, or deciding the existence of an
augmenting path is highly non-trivial). (−→ Edmonds’ algorithm)
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